

Phone: 480 884 1996 Fax: 480 884 1984

Case ID:M18-117P Published: 12/20/2018

Inventors

Meng Wang Yuxia Shen Sefaattin Tongay Matthew Green Ying Qin

Contact

Physical Sciences Team

Scalable Manufacturing of 2D Coordination Polymer Films

Background

Two dimensional (2D) polymers are relatively new types of organic materials with remarkable electronic and structural properties, making them attractive for a variety of applications. Unlike traditional polymers, monomer building units are arranged in a sheet-like manner to form 2D networks of 2D polymeric materials. This opens a wide range of new applications for polymers in the nanoelectronics, photonics, and biomedical fields. However, efficient high-volume production of 2D polymers has not been successfully established. Isolation of single-layer polymers, ability to achieve large, defect-free areas, and control over crystallinity and thickness remain critical challenges for 2D polymer production.

Invention Description

Researchers at Arizona State University have developed an innovative system for scalable and cost-effective manufacturing of 2D polymers. Synthesis of a variety of 2D polymeric materials is achieved using a two-phase technique coupled with a roll-to-roll mechanism for collecting 2D polymeric sheets at a controlled rate. Polymer thickness, crystallinity, and structure can be controlled through adjustment of various manufacturing parameters.

Potential Applications

- Nanoelectronics
- Photonics
- Catalysis
- Porous membranes

Benefits and Advantages

- Innovative Enables cost-effective, large-scale deposition of 2D polymers onto flexible substrates, currently unachievable with existing techniques
- Scalable Design emphasizes industrial compatibility and potential for largescale manufacturing of 2D polymers

• Tunable - Allows close control of the thickness, crystallinity and structure of produced 2D polymers

Laboratory Homepage of Professor Sefaattin Tongay

Laboratory Homepage of Professor Matthew Green