
  1475 N. Scottsdale Road, Suite 200
Scottsdale, AZ 85287-3538

Phone: 480 884 1996 Fax: 480 884 1984

Improved Mapping of Computational Loops on
Reconfigurable Architectures

Today there are numerous devices that collect, process, and communicate data

from multiple sources such as the internet, cyber-physical and autonomous

systems, and sensor networks. Extracting intelligent and actionable information

from this data—whether done by machine learning or otherwise—is extremely

compute-intensive and often limited by power, thermal, and other resource

constraints. Execution efficiency of these functionalities can be achieved by using

application-specific integrated circuits (ASICs). However, they suffer from high

production costs, and quickly become obsolete as applications and algorithms

evolve. Another promising alternative is field programmable gate arrays (FPGAs),

which lose efficiency in providing bit-level configurability, that is essential for their

primary purpose—prototyping. Coarse-grained reconfigurable architectures

(CGRAs) provide a balanced middle ground with coarse-grain configurability (word-

and arithmetic-operator-level), with minimal loss in power efficiency relative to

ASICs.

The acceleration achieved by CGRAs relies on the efficient mapping of the

compute-intensive loops by the CGRA compiler onto the CGRA architecture. The

CGRA mapping problem is performed in a two-step process, namely scheduling and

mapping. The scheduling algorithm allocates timeslots to nodes of a data flow

graph (DFG), and the mapping algorithm maps the scheduled nodes onto the

processing elements (PEs) of the CGRA. On a mapping failure, the initiation

interval (II) is increased and a new schedule is obtained for the increased II. Most

previous mapping techniques use iterative modulo scheduling (IMS) to find a

schedule for a given II. Since IMS generates a resource-constrained ASAP (as soon

as possible) scheduling even with increased II, it tends to generate a similar

schedule that is not mappable. Therefore, IMS does not fully explore the schedule

space. Researchers at Arizona State University have developed a scheduling and

mapping technique that addresses the mapping shortcomings of iterative modulo

scheduling (IMS). Specifically, this involves generating random modulo schedules

within the schedule space, thereby creating different modulo schedules at a given

and increased initiation interval (II).

Both the Resource Constrained As Soon As Possible (RC_ASAP) and Resource

Constrained As Late As Possible (RC_ALAP) schedules are generated for all the

nodes of the data flow graph (DFG), similar to the concept of mobility used in high-

level synthesis (HLS). Then the algorithm chooses a random scheduling time

between RC_ASAP and RC_ALAP for each node. As a result, every time a “new”

schedule is obtained, the schedule space is effectively explored. A novel

conservative feasibility test is subsequently performed, which ensures mappability

of the obtained schedule even upon addition of the new routing nodes. Among the

Inventors

Mahesh Balasubramanian

Aviral Shrivastava

Contact
Shen Yan
shen.yan@skysonginnovations.
com

Case ID:M21-079P^

Published: 9/21/2021

24 performance-critical loops (that account for more than 7% of execution time of

the application) from MiBench, Rodinia, and Parboil, this innovative approach was

able to map all the loops for various CGRA sizes ranging from 4×4 to 8×8, and

achieved a comparable II for the loops which were mappable by RAMP.

Related Publication: CRIMSON: Compute-intensive loop acceleration by Randomized

Iterative Modulo Scheduling and Optimized Mapping on CGRAsPotential

Applications:

Acceleration of compute-intensive loops•

Course-grained reconfigurable arrays/architectures•

Cyber-physical systems•

Autonomous systems•

Benefits and Advantages:

Detected unmappable schedules are eliminated and their associated mapping

algorithms are not invoked

•

Saves computing time and accelerates computing rate by reducing

unnecessary computing times of unmappable schedules

•

https://mpslab-asu.github.io/publications/papers/Balasubramanian2020TCAD.pdf
https://mpslab-asu.github.io/publications/papers/Balasubramanian2020TCAD.pdf

